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Abstract

Modern applications for high performance networking
have universally turned towards RDMA and InfiniBand
after declaring TCP/IP as too slow and inefficient. As
discussed at Linux Plumber’s Conference (LPC) 2022
[1], the core of the Linux IP/TCP/ethernet networking
stack is capable of running at very high speeds (line
rates of existing NICs and next versions), but changes
are needed with respect to how the stack is used.

It has long been known that the current BSD socket
APIs for sending and receiving data have too much
overhead (e.g., system calls, memory allocations,
memcpy, page reference counting) that severely limits
the data rate, but the choice of simplicity of
well-established interfaces and universal applicability
has prevailed, and the interfaces have been hard to
replace.

Linux has a few new design options for networking -
namely, io_uring and XDP sockets. However, neither is
a good end-to-end solution for achieving high data rates
for a flow while leveraging the Linux protocol stack.
io_uring mostly reduces the system call overhead and
memcpy on Tx, while XDP sockets are a complete
kernel bypass, sending packets directly to userspace
buffers.

This paper discusses another option - merging some
existing concepts of RDMA with traditional
socket-based TCP/IP networking. Specifically, we show
that one can leverage the existing IB verbs software
APIs to create and manage memory regions between
processes and hardware along with better integration of
hardware queues and software queues to a kernel driver
for submitting work and getting completions. This

allows applications to submit pre-allocated and shaped
buffers to hardware for zerocopy Rx and Tx, yet still
leverage the kernel’s TCP stack and its well established
congestion control algorithms. This approach blends the
fairly large application base using the verbs/RDMA
interface with the familiar networking stack,
management interfaces and wire protocols of TCP/IP,
yielding reduced syscalls, better buffer management,
and direct data access into userspace buffers.

This proposal is more about showing how the
networking stack, its programming interfaces and
control knobs are modular so that a developer can
assemble the combination they want to get the best
trade-off they seek. Further, this is actually doable
today without a major departure from the use of
existing Linux APIs.

1.0 Introduction

Modern applications like machine learning and
disaggregated storage want to run single flow
connections at high rates. It has long been known that
the current BSD socket APIs for sending and receiving
data have too much overhead, severely limiting the data
rate. Linux networking has a number of “recent”
changes to address some of the problems, but there is
no end-to-end solution that will scale to next-
generation line rates (400G and 800G).

Currently, applications have to either accept the
overhead and limited flow rates of the socket APIs, or
convert to a completely different paradigm, one that
bypasses the networking protocols in the Linux stack.
RDMA and InfiniBand, for example, have the
mindshare when it comes to low latency, high
throughput deployments while kernel bypass
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frameworks, like DPDK, have significant traction as
well.

This paper looks at how concepts from RDMA, along
with the existing Verbs software APIs, can be used with
socket based applications to get the best of both worlds
- significantly reduced overhead in the datapath, while
maintaining use of socket APIs and the Linux
networking protocols for the control path. Let’s start by
reviewing the conclusions presented at LPC, and then
discuss options to achieve the desired characteristics.

1.1 Improving Socket Based Networking

The core of the Linux IP/TCP networking stack is
capable of running at very high speeds (line rates of
existing 100G and 200G NICs and even versions on the
horizon, 400G and 800G) [1], but changes are needed
with respect to how the stack is used to bypass or
eliminate unnecessary overhead in the datapath.
Specific to this paper:

1. memcpy between user and kernel space limits data
rates to at best 30Gbps. To achieve high data rates, an
architecture is needed where hardware pulls (or lands)

packet payload directly from (or into) application
buffers.

2. Reduce or eliminate system calls. Calling recvmsg

and sendmsg - even with high buffer sizes - adds
significant overhead, which affects performance,
latency, and CPU cycles needed for a given packet rate.

3. Avoiding the various infrastructure hooks (netfilter,
tc, ebpf, packet sockets) in the networking stack for
data path packets. Linux is a general purpose OS, and
as such, has many hooks through the networking stack
to implement policy decisions, such as managing
allowed connections. Once the connection to a peer is
established (i.e., the control path), the hooks are mostly
overhead in the data path for many use cases. In the
case of packet sockets (e.g., tcpdump), the hook
severely affects the performance of all connections if a
single packet socket is open as packets are cloned.

4. The ability for an application to manage buffers
supplied to hardware to send and receive packet
payloads. This avoids the need for per-packet or
per-buffer reference counting on pages. In an
architecture where 1. above is satisfied, the application
using zerocopy interfaces knows best which buffers are
available for incoming packets. Allowing userspace to
manage a queue that supplies buffers to hardware
moves the buffer management overhead to userspace,
avoiding complexity in the kernel. Further, by
registering that memory ahead of time, the CPU cost to
pin pages and manage DMA mappings can be handled
as part of the control path, rather than done on a packet-
by-packet basis.

(Note, other important factors identified in [1] for high
speed networking, such as a solid H/W GRO scheme,
are not directly relevant for this paper, but do factor in
based on the hardware-specific driver managing
hardware queues for the QP.)

1.2 Zerocopy APIs

Linux has a zerocopy (ZC) API for Tx [2], [3] and Rx
[4],[5]. The Tx API is fairly easy to use and removes
the need to copy buffers from userspace to kernel when
using sendmsg. While it avoids the need for memory
copy, it retains the overhead of system calls to send
packets and adds the need for more system calls to reap
completions. In addition, it brings in the need to
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manage pages backing the userspace buffers (pinning
and reference counting). Even with new sources of
overhead, the Tx API brings a significant improvement
for flow rates up to ~100Gbps; it alone is not sufficient
to reach 200G and beyond.[1]

The Rx ZC API on the other hand is quite limiting. It
requires a specific MTU such that packet headers land
in one buffer to be consumed by the networking stack,
and then payloads destined for a userspace process must
consume an entire page, which is then flipped into the
process’ address space. A setsockopt system call is
used to receive pending data at an address with a side
buffer for payload fragments less than a page size.
Given the constraints, the API is quite limited in
applicability, and not practical beyond very specific
environments.

1.3 io_uring

io_uring is a new take for asynchronous I/O with Linux
starting with v5.1.[6] As shown in Figure 3, it provides
software queues (Completion Queue and Submission
Queue) between kernel and userspace, with the idea of
reducing the number of system calls to submit work and
to manage completions. The liburing library provides
abstractions for applications to simplify interaction with

the kernel APIs. One feature of note for this paper is
that io_uring allows a process to register buffers with an
io_uring instance to amortize the costs of using
userspace buffers.

io_uring was started with the intent of speeding up
file-based I/O, but quickly gained support for
networking.[7] Networking applications use the normal
socket API to establish a connection to a peer. Once
established, the socket fd can be passed to an io_uring
instance to manage the sendmsg and recvmsg calls via
the SQ. With the 6.0 kernel release, io_uring gained
support for the networking Tx ZC API which removes
the need for memcpy on Tx and handles the ZC
completions in the kernel, reducing the overhead for
managing completions. In addition, the feature can be
used with registered buffers to also reduce the overhead
of pinning buffers when used with Tx ZC.[8]

In summary, io_uring for the networking datapath
solves a few of the problems discussed earlier: it
reduces system calls, avoids memory copy on Tx,
simplifies overhead of ZC completions and the page
management overhead for Tx buffers. However, as a
generic, higher level kernel facility, io_uring does not
work with (or have access to) hardware queues, packets
go through the entire network stack (from driver to
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socket queue), and there is still the memcpy on Rx - all
of which adds cpu cycles in the datapath and thus limits
flow rates. Even if io_uring had the best possible
performance, it still introduces a new application API,
which means all the controls around pinning,
placement, and logical buffer pools will need to be
added to the interface.

1.4 XDP sockets

Linux v4.18 introduced a new option for networking in
the form of AF_XDP sockets. [9],[10] AF_XDP
sockets are designed to bypass the datapath of the
Linux kernel, passing packets from the driver up to a
userspace application via software queues.

Applications open an AF_XDP socket and register a
buffer, called umem, with the hardware driver that owns
the netdevice to which the socket is bound. The umem
provides fixed and equally sized chunks for sending and
receiving packets directly from userspace memory.

There are 4 software queues: a Fill ring for handing off
buffers to the driver for use with hardware queues (e.g.,
ZC mode to avoid a memcpy), an Rx queue for the
driver to tell the application about received packets, a

Tx queue for an application to pass packets to the driver
and a Completion queue for the driver to notify the
application of sent packets (umem buffers are passed
back to userspace).

An XDP program running in the driver picks which
AF_XDP socket to land the packets. libxdp and libbpf
provide the userspace abstractions for the kernel APIs,
to ease writing and managing programs.

As a full-kernel bypass, AF_XDP by definition avoids
all of the overhead discussed earlier, but it also
bypasses the TCP/IP stack, affecting how networking is
done by a program. In short, the application has to
implement all of the networking protocols of interest to
it in order to process and manage packets through the
XDP socket. This paper is about how to leverage the
kernel’s TCP/IP stack, so the AF_XDP approach is not
inline with this goal. What is relevant to this work is
that AF_XDP is an example of a solution for Rx
zerocopy where hardware directly lands packets into
userspace provided buffers, along with S/W queues that
cross the user-kernel boundary for reducing system
calls when queuing and managing work. The former
addresses limitations of an io_uring architecture in the
form of Rx ZC.

The targeted architecture of this paper is, in a sense, a
merging of AF_XDP and io_uring: dedicated hardware
queues for a flow at the bottom enabling ZC in both
directions, S/W queues at the top to avoid system calls,
and retaining the hooks into the TCP/IP stack in the
middle.

1.5 RDMA and IB Verbs

Another existing subsystem in the Linux kernel for
networking is RDMA and the IB Verbs APIs. RDMA
and InfiniBand have been around for over 20 years and
have the mindshare for HPC type deployments looking
for high throughput with low latency. InfiniBand,
however, is a completely separate ecosystem from
ethernet networking, consisting of different hardware,
software and protocols. And it exists in a predominantly
ethernet world, where a push for converged
infrastructure has led to the adoption of RoCE, now in
its second version. While ROCE allows RDMA to run
over ethernet in fairly directed networks, it has been
difficult to build shared use networks where TCP’s
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congestion control and performance in lossy
environments is much better understood.[11,12]

The IB Verbs API is the software piece of this and is
used for both InfiniBand and RoCE deployments, so
really the “IB” in the name is a distraction - a legacy
moniker. The effort in this paper targets re-use of these
S/W APIs in conjunction with traditional socket based
networking.

RDMA in general is a huge topic with a lot of
concepts. This paper is only concerned with specific
aspects of RDMA and specific capabilities from the
S/W Verbs API, and all of these concepts of interest
have overlaps with io_uring and AF_XDP.

In RDMA, memory regions (MR) allow applications to
register buffers (contiguous memory) with hardware,
amortizing the cost of pinning pages and mapping the
addresses with hardware. It is useful to think of MRs as
being analogous to AF_XDP's umem, and similar to
registering buffers in io_uring.

A queue pair (QP) in RDMA is a set of receive and
transmit queues between a userspace application and
hardware. The queues are used to submit work request
entries directly to hardware - e.g, posting buffers to
receive data or posting buffers to transmit. Where
AF_XDP relies on the driver to convert between XDP

descriptors and hardware descriptors, RDMA allows
applications to have direct access to hardware queues.
The provider layer that hooks into libibverbs handles
the vendor unique aspects of managing hardware
queues in an application.

QPs have a completion queue for notification of work
requests that have been completed. An application can
have separate completion queues for send and receive,
or one completion queue for both.

Finally, there is a protection domain (PD) that
associates QPs and MRs from a security perspective.

RDMA has four basic operating transport modes:
Reliable Connection (RC) has a single QP associated
with only one other QP. Messages transmitted by the
send queue of one QP are reliably delivered, in order to
the receive queue of the other QP. RC mode is very
similar to a TCP connection. With Unreliable
Datagram (UD), a QP may transmit and receive
single-packet messages to and from any other UD QP.
Ordering and delivery are not guaranteed and delivered
packets may be dropped by the receiver. Multicast
messages are supported (one to many) with UD. UD is
very similar to a UDP connection. The other 2 modes,
Reliable Datagram (RD) and Unreliable Connection
(UC), are not of interest here, and in fact we will focus
exclusively on RDMA-RC for now.

The software architecture for RDMA looks very similar
to XDP sockets, but with some key differences -
namely the layers of software-hardware integration. In
the IB verbs architecture, there is a hardware specific
driver that handles the vendor unique details on the
kernel side of the verbs APIs, and a userspace software
provider that handles vendor unique implementations in
userspace (e.g., managing hardware descriptors), with
both going through common layers that carry much of
the Verbs API.

From a data transfer perspective, RDMA is, in essence,
an example of zero copy networking (ignoring many
aspects of the larger RDMA concept and focusing
solely on parallels with socket-based networking). For
Tx, hardware reads from userspace memory, pulls that
data into packets, adds protocol headers, and sends the
packets to a peer. On Rx, hardware looks up a QP based
on data in the packet headers and then writes packet
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payload into application memory at a specific location -
ie., ZC Rx.

Furthermore, it is quite common today for NICs to be
able to run in either mode - ethernet or InfiniBand -
with the toggle of a configuration setting. Clearly, there
is already quite a bit of convergence between the two
worlds.

On the S/W side the IB verbs API is just a means for
configuring the hardware for a zerocopy flow and
managing the details of an application directly
accessing the hardware queues. As an existing API for
setting up ZC networking, this effort only needs to
focus on how to integrate the verbs API with socket
networking.

2.0 Using RDMA Concepts with Linux
Stack

The goal of this paper is to show how RDMA concepts
can be used today to speed up socket-based networking.
Specifically, the goal is for applications to continue to
use socket APIs and the kernel networking layers to
establish a connection to a peer. Then, applications that
want the lower overhead path (e.g., need low latency or
high throughput or wanting to reduce the CPU load)
may opt-in to the Verbs APIs to set up the efficient
datapath - one that gets the OS out of the way for actual
payload data movement, but leverages the OS for
packet headers and routing decisions.

Figure 6 shows such an architecture. Applications
leverage a hardware vendor-provided kernel driver and
libibverbs provider layer to obtain a more seamless
integration of the data path between application and
hardware, with much less overhead.

Applications use IB verbs calls to register memory with
hardware, allowing hardware direct access to land and
pull data for ZC networking. The QP concept is
extended to have both hardware and software queues.
The software queues avoid the need for system calls
when submitting work and getting completions; the
hardware queues provide a flow-unique resource for
sending and receiving packets from the network. The
hardware queues are directly managed by the
vendor-provided kernel module, avoiding the need to
translate between queue formats, and allowing an RSS
rule to be created in hardware to direct packets for the

flow to the correct queues. Further, depending on
vendor choices and hardware design, the queues can
just as easily be mapped directly to userspace (e.g.,
allow applications to submit buffers directly to
hardware for Rx, bypassing any software based middle
layer).

In addition, the kernel module takes ownership of the
socket and directly interacts with the Linux networking
stack, just like so many other in-kernel networking
drivers (e.g., nvme over tcp and nfs). The in-kernel
handling of the socket allows a more efficient Tx ZC
API and handling of completions - something now
realized with io_uring. The RSS rule tells the hardware
which queue to use for the flow realizing a ZC Rx
solution. Comparing Figure 6 to Figure 1, we see that
all of the aforementioned overhead in the datapath of
the Linux networking stack is now gone with one
exception - the need to allocate skbs to interact with the
TCP stack.

In a huge sense, this is the desired blending of io_uring
and AF_XDP concepts, but done with a holistic
approach to solving the networking overhead, rather
than going at this piecemeal and stitching layers
together. Further, by leveraging the existing verbs
primitives, this architecture can be achieved today
while avoiding the need to add new APIs specific to the
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Linux networking stack. Rather, all that is needed is
vendor-unique glue in the form of a provider and kernel
module to implement the two halves of the Verbs S/W
APIs in a way that works with the vendor’s hardware.

3.0 Example Application

At boot the hardware driver creates a netdevice (e.g.,
eth0) that represents the ethernet port on the NIC to the
software networking stack. In addition, loading the
associated IB driver (IB as in the vendor unique module
that handles the S/W APIs) creates an RDMA virtual
device to present the hardware port to the IB S/W stack.

An application wanting to leverage the IB verbs APIs
will need to find and open the IB device that represents
the physical port to get the supported attributes. This is
done using the following libibverbs APIs:

ibv_get_device_list
ibv_get_device_name
ibv_open_device
ibv_query_device
ibv_query_port

From there the application gets a protection domain for
its MR(s) and QP(s), ibv_alloc_pd.

Buffers to be used for sending and receiving messages
are allocated using mmap, memalign or malloc,
and then the buffers are registered with hardware as
MRs using the ibv_reg_mr function.

Before creating the QP, the application needs to create 1
or 2 CQs using ibv_create_cq(); the CQs are passed
in the attribute argument when creating a QP using
ibv_create_qp() to associate the send and receive
queues with a completion queue. The provider and
driver implementations for the create_qp verbs API
create hardware queues and software queues for the
flow, and mmap’s the software queues to userspace (SQ
to submit send requests, RQ to learn of filled buffers,
and a WQ to submit buffers to hardware).

Once the QP is created, the application proceeds to
establish a socket connection with a peer using the
typical socket APIs and full Linux networking stack.
Once the socket is established, the QP is transitioned
through various states INIT -> RTR - > RTS using
ibv_modify_qp. During the transitions the application

expecting incoming messages posts receive buffers
using ibv_post_recv(), the data socket is handed off
to the kernel module to manage the interaction with the
TCP stack. At that point the kernel driver knows the
5-tuple and installs an RSS rule in hardware to steer
packets for the flow to the socket specific set of
hardware queues.

The sender posts send requests using
ibv_post_send(). As the application adds entries to
its SQ, it can either do a kick (i.e., system call) to tell
the kernel module to send the buffer to the peer or the
kernel module can use a kernel thread and spin poll
checking the SQ. Either way, it sees the new entry and
invokes sendmsg kernel side to push data through TCP
using the zerocopy APIs. Transmit handlers send skb’s
(packets) back to the driver to submit to hardware via
its hardware queues. Once the peer acknowledges the
payload, a ZC callback is invoked, and the application
is notified via a CQE that the peer has received the data.

On the receiver side, packets are received at the NIC,
steered to the flow specific queues, and the packets are
written into the application supplied buffers (ZC Rx).
The kernel module manages the Rx descriptors for its
hardware queue, creates an skb and pushes the received
data through TCP to advance its state machine and
ensure in-order delivery. The sk_data_ready hook
for sockets is used to come back to the kernel module to
handle the received data. Once a posted buffer has been
consumed, it adds a completion event to the receive
CQ, telling the application about the new data.

Applications on both ends poll for completions on the
CQ using ibv_poll_cq(). Completions for the sender
mean the buffer has been acknowledged by the peer;
completions for the receiver indicate a posted buffer has
been consumed.

4.0 Summary

Modern applications want to run single flows at high
rates. The Linux TCP/IP stack is more than capable, but
a design is needed that avoids the unnecessary overhead
in the datapath (i.e., the OS needs to get out of the
way). This paper shows how concepts from RDMA
along with the existing IB Verbs S/W API provides
such a solution allowing traditional socket based
communication via the TCP/IP networking stack to run
at higher speeds.
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The proposal outlined in this paper is really not that
radical of an idea. RDMA is in many ways a form of
zerocopy networking. Further, comparing the software
architecture to io_uring and AF_XDP, there are a
number of common factors: userspace memory
registered with a kernel driver and hardware, software
queues to avoid/reduce system calls, hardware queues
specific to an application flow, and a library to simplify
application development. Applications wanting better
performance opt in to APIs that remove overhead.
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